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This paper deals with the impingement of two streams of an ideal incom- 

pressible fluid which move toward each other from infinity in the space 

bounded by solid walls. The motion is steady. 

In the case of plane flow a complete solution of the problem is given 

by the use of the theory of functions of a complex variable. In the case 

of axial symmetry certain formulas which are important for practical 

applications are derived by the use of the law of conservation of momentum 

1. Assume that the planes of symmetry of the jet and the bounded flow 

coincide, the walls are parallel and the space between the walls is filled 

with the flow to infinity. 

Because of the symmetry of such a flow it is.necessary to study only a 

portion of the latter, shown in Fig. 1. 

Fig. 1. 

Here AB is an ideal solid wall, AC is the bounded flow, EF the jet, 

CO the boundary between the particles of the jet and the flow, DE the free 

surface of the jet, and GF the symmetry plane of the flow. 

Let us assume that the velocities of the jet and the flow at infinity 

(cross-sections AC and BF) do not vary with time. 

1192 



On a certain problca in the theory of jets 1193 

Under these conditions the motion of the particles of the fluid will 

be steady with respect to the coordinate system with origin at the Point 

0. 

As is known, the solution of such a problem is reduced to finding the 

velocity potential function 4 which satisfies the Laplace equation A24 

and the boundary conditions 

a(P=U on 
dn 

AB and 

(DE is a free surface), where n 

principal normal and tangent at 

R be a complex potential of the 

GF; $0, $= const on DE 

and s are respectively directions of the 

an arbitrary point of the boundary. Let 

flow: 

IV (2) = p + il), z=z+iy (1.1) 

where $ is the stream function of the flow. Let us find the solution of 

the given problem by the use of the theory of conformal mapping. 

Let II, be the velocity of the bounded flow at infinity, prthe density 

of that fluid, HO-the half-distance between the solid malls. &o-the 

strength of the source producing the bounded flow under oonsideration at 

infinity, ubD-the velocity of the jet at infinity, PO-the density of the 

jet fluid, h--the half-width of the jet at infinity, L-the strength of 

the source producing the jet under consideration at infinity. 

Let us assume at first that p = p” = 1. Let us express the boundary 

conditions of the problem in terms of the stream function $. Assuming 

$ = 0 at the boundary COF and OC, we have 

4J = Q, 

By means of function I 

on AB, (J = qae on DE 

the region of flow under consideration (Fig. 1) 

of the Z-plane may be mapped conformally into the rectangular region of 

the R-plane shown in Fig. 2. The notations show the location of the bound- 

aries of the region mapped. 

Following N.E. Zhukovskii we introduce an auxiliary function 

The quantity dW/dz = vz is the complex conjugate of the velocity vector 

of any given point of the flow. 

Separating the real and imaginary parts of Z, we write 

X = In II / 2~~ I, Y=a 

where a is the angle of inclination of the velocity vector with the posi- 

tive direction of the real axis in the Z-plane. Function Z brings about 
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the conformal mapping of the region under consideration into the tri- 

angular region of the Z-plane. 

Fig. 2. Fig. 3. 

The configurations of the region under consideration In the planes W 

and 2 are bounded by straight lines. 

When introducing the three points on the t-axis which correspond to 

the three vertioes of the rectangular region in the W-plane, as shown in 

Fig. 4. in the t-plane. on the basis of Christoffel’s formula, we obtain 

1 

w (f) = Cl s 1 (f - I)-’ (1 + a)-‘dt + t, 

0 

Integrating and determining the unknown coefficients 

conditions of the problem, we write 

Fig. 4. 

From (1.4) follows, that 

(1.3) 

from the boundary 

a .- 

t+c JV(r)=zln - 
K ) 

a+1 

a 
(l-q”;‘] (1.4) 

Q, ucSo 
n=-=- 

Qco %& (1.5) 

Analogously, when mapping the upper half-plane (Fig. 

triangular region of the Z-plane (Fig. 3), we find 

1 
z (t) = c2 

z 
t--l (t I)-% + z, 

0 

(1.6) 

4) into the 

Integrating and determining the unknown constants from the boundary 

conditions of the problem, we obtain 
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z (t) = - 2it*n-l Vt - In va0 + in 

Using the relationship between the arctangent and logarithm in the 

complex plane. we transform this expression into the form 

2 (1) = - In 
[ 

ZJ~,-‘~ 
1+iVt--1 

I-ii= 1 (1.7) 

Since Z(O) = In II_, (Fig. 3: for t = - a. when substituting this value 

in (1.7) and using (1.5). we obtain 

%a 
/- v 40 

-=i-2 ET v4n 0 

Eliminating Z from equations (1.2) and (1.7)) we write 

dw 
72 = V-e 

-in i + i IT3 
I-iiZ--1 

(1.8) 

Dividing (1.9) by (1.6) and integrating the expression obtained with 

limits from 0 to t, we find 

z _ Qe*" _ (L+ “a+zln t + a + 1 In(i _ t) + 

[ 
( > -_ 

=vm l+a a a+1 
4I/a 

+- 
1+a 

,” (l/G77 - i VT3 

\ va+l+1 >I (1.10) 
If it were possible to eliminate the parameter t from (1.4) and (1.10) 

and then separate the real and imaginary parts of the obtained expression 

for W(Z). we would find the desired solution in an explicit form. However, 

it is not possible to eliminate t from equations (1.4) and (1.10). There- 

fore, for their practical use we will find the solution to the problem in 

parsmetrical form. We will express complex quantities t + o and 1 - t in 

the following form: 

t + a = rleiyl, i - t = r,eira 

where rl, r2, yl. yp rnti be taken as bipolar coordinates of the point in 
the t-plane, connected by the obvious relationships 

n=(a+l) 
siny2 1 

sin (ul + ~2) ’ 
r2=(a+ 1) . ‘lny‘ 

s1n (Yl+ Yz) 
(1.11) 

substituting the expressions for t + o and 1 - t into (1.4), replacing 

Q, and L by their values, and separating the real and imaginary parts of 
the equations obtained, we write 

(1.12) 
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Analogously, transforming equation (1.10) by the use of the same sub- 
stitutions, we find 

where 

On the basis of (1.13) we find the position of the point D on the free 

surface at infinity (Fig. 1). We have 

Hence y = - l/a. and the desired quantity 

y,=21/f~m-hha, (1.15) 

The above formulas (1.12) and (1.13) allow the construction of the 

stream lines $ = const and the lines of constant potential (b = const in 

the z-plane of the problem under consideration. Let us determine the 

velocity of an arbitrary fluid particle vz by the use of (1.9) and the 
substitution 1 - t = r2 exp(iy,) introduced above. 

Denoting the absolute value of the desired quantity by [ vz 1 = v,T and 

its argument by arg vz = /?‘. and making the necessary calculations, we 

obtain 

7‘= 1/ r2 - 2 v r, cos ‘/2y2 + 1 

ri :- 2 I/< cos 1/zy2 + 1 

fi = tan-l 
[ 

2 V, . y2 
c sin - 2 I *2 

(! .16) 

(1.17) 

It is assumed above that p = p” = 1. Let us find the condition for 

which the solution obtained is valid for different densities of the jet 

and the bounded flow. We will use the fact that the Bernoulli constant 

c = P* + + P I vz I2 (1.18) 

for the flow under consideration is constant at all points of the moving 

fluid [ 1 1. This condition is fulfilled for different densities of the 
jet and the bounded flow if, along the boundary separating the two fluids. 

there is a discontinuity in velocity of the magnitude 
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m= 1/ T 
0 
P 

(1.19) 

Assuming that the stream velocity at infinity and the geometry of the 

flow do not change, by using the relationships (1.8). (1.18) and (1.19) 

we find the desired condition 

(1.20) 

where h = Zh, and If= 2H9 are respectively the width of the jet and the 

distance between the solid walls, and u1 is the jet velocity at infinity, 

for which the exact solution, obtained under the assumption p = p” = 1. 

is valid for any given densities of the jet and the bounded flow. 

Consider the motion of the jet and the bounded flow in the coordinate 

system fixed with respect to the solid walls of the system. The velocity 

of the jet V at infinity in this coordinate system is obviously deter- 

mined by the equation V = vDo + aI. Also, the velocity u1 may be regarded 

as the velocity of penetration of the point 0 on the boundary separating 

the jet and the bounded flow (Fig. 1). Using this condition, let us trans- 

form (1.20) into the form 

v 
u1 = 1 + m/n 

(1.21) 

This formula determines the magnitude of the velocity of penetration 

as a function of the absolute jet velocity, the densities of the jet and 
the bounded flow and the geometry of the flow. 

For voo we obtain 

V 
v, = 

_” 

1 + n / n; - ( 

1+1-21’/K7X -1 

VP/p” > - 
(1.22) 

From (1.20) it follows that the depth of penetration 1 (the distance 

traversed by the point 0 in unit of time) is expressed, in terms of the 

distance traversed in the same time by the particle of the jet situated 

at infinity L, by the formula: 

l=LZ=L ‘$7 (1.23) 
m P 

The distance between the free surfaces of the divergent stream branches 

at infinity h0 = 2y1, is determined in this notation by the following 

formula: 

A, = 2 v/Hlh - h (1.24) 

Using (1.8), (1.21), (1.22) and the expression for the absolute velo- 

city at any point of the bounded flow 1 vz 1, we will find the expression 
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for the pressure at any point in the jet or the bounded flow.* 

(1.25) 

In particular, at the point 0 where, in accordance with (1.161, T= 0, 

we get 

Note that if the distance between the solid walls is increased inde- 

finitely, i.e. HO + 00, the solution obtained above will become the solu- 

tion obtained by Lavrent’ev in 1947 (the work has not been published), 

and also independently by Birkhoff [l I. for penetration of the two- 

dimensional jet into an infinite space filled with incompressible fluid. 

2. Now consider the axially-symmetrical case of impingement of the jet 

and the flow of an ideal weightless fluid in the space bounded by a 

cylindrical solid wall. This wall is to be at rest. Let us denote the 

constants at infinity: the velocity and pressure respectively by u,“, 

PP for the jet and by IA_, p, for the bounded flow. 

Let r,” be the radius of the jet, r= the radius of the free surface, 

R, the radius of the surface of separation, and R the radius of the solid 

boundary of the region. We denote the densities of the bounded flow and 

the jet by p and p” respectively. 

Let us find the variation of the momentum dK of the volume of fluid N 

which is swept through by the rotation of the region ABCDEFGB (Fig. 5) 

around the z-axis; this volume, in the given coordinate system roz, will 

assume the configuration AIBICIDIEIFIGIH1 after passage of time dt. The 

quantity dK/dt is determined by the motion of the volumes N (1)N(2)N(~)N(4), 

the cross-sections of which are shaded in Fig. 5. For the equilibrium 

process under consideration, this quantity is equal to the sum of hydro- 

dynamic pressures acting on the surface of the volume N under consideration. 

Fig. 5 

. It is assumed that there is no external pressure and that C = C in 

formula (1.18). 



On (I certain problem in the theory of jets 1199 

Assuming that the cross-sections AH and BC are sufficiently far from 

the origin of the coordinate system 0 and that the corresponding velocities 

and pressurds in these cross-sections are constant and equal to their 

values at infinity, we write 

d 
puao d+ N(l) + pou,o dT Iv@) = XR2 (p, - P,“) (2.1) 

where u0 is the flow velocity at cross-section BC. the magnitude of which 
is determined, as in the two-dimensional case, by the condition of exist- 
ence of a velocity discontinuity at the boundary of the jet and the bound- 

ed flow. It is given by the equation 

U0 = u,” m (2.2) 

The values of the derivatives of the respective volumes are given by 

d+ ,$‘I = xRZ~,, d+ Nt2’ = x (Ra - I&,“) 11” 

-$- Nt3) = x (R& -- ‘_‘) u,‘, .-$ Nt4) = - nrmo2umo 
(2.3) 

Writing the Bernoulli equation for an arbitrary streamline which passes 

through the cross-sections HA and BC. we find 

P,-Pco”= 2 JL (Id08 - u,“) (2.4) 

Substituting the values of the corresponding quantities (2.2), (2.3) 

and (2.4) in (2.1), and performing the transformations, we obtain 

Eliminating R from the equations of continuity for the jet and the 

bounded flow in these cross-sections, 

u,xR” = uox (R2 --Hz,), ucooxrmo2 = u,“x (R,* - r,“) 

and using (2.21, we write 

Eliminating r_ from (2.5) and (2.6). we obtain the relationship 

(2.5) 

(2.6) 

(2.7) 
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which is analogous to (1.20) for the motion in the two-dimensional case. 

In (2.7) 

rm” 
Ilo= I--2R , c 1 mo=~P/Q” 

co 

Assuming am + II,” = V in the fixed coordinate system (V is the stream 

velocity, while urn is the velocity of motion of the point 0, i.e. the 

velocity of the boundary of separation of the fluids), we find 

-1 

% 
= I’ 1 + m$ ( > 

-1 
( urn0 =v I+;!! ( ) (2.8) 

From (2.7) and (2.8) there follows that the trajectory 1 of the point 

0 is expressed in terms of the trajectory L of the jet cross-section by 

the formula 

From (2.6) and (2.7) it follows that 

‘00 = 1/ 2r,“R - rc40B (2.10) 

Assuming that the pressure in the jet at infinity is zero, we find the 

pressure at the point 0: 

(2. Ii) 

It should be pointed out that there is at present no exact solution of 

the three-dimensional problem on the motion of an ideal fluid with free 

surfaces. Lavrentev’s work [ 2 I notes methods of possible solutions of 

such problems from the mathematical point of view for the case of axial 

symmetry. Southwell and Vaisey have calculated several cases of motion 

of the streams with axial symmetry employing the numerical relaxation 

method. 

The relations obtained above permit us. by 

method, to calculate approximately the stream 

lines of the velocity field and the pressures 

sideration. 

means of the relaxation 

lines and equipotential 

for the problem under con- 

In conclusion, let us note that comparison of the analogous expressions 
determining the parameters of the investigated flow, (1.20). (1.23), (1.24). 

(1.26) for the case of plane flow, and (2.7). (2.9). (2.10). (2.11) for 
the case of axial symmetry of motion, shows a substantial difference in 

the quantitative expression of these parameters. 
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